首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7492篇
  免费   359篇
  国内免费   252篇
  2023年   119篇
  2022年   130篇
  2021年   205篇
  2020年   208篇
  2019年   272篇
  2018年   291篇
  2017年   152篇
  2016年   134篇
  2015年   240篇
  2014年   458篇
  2013年   550篇
  2012年   350篇
  2011年   422篇
  2010年   303篇
  2009年   349篇
  2008年   362篇
  2007年   367篇
  2006年   344篇
  2005年   308篇
  2004年   184篇
  2003年   206篇
  2002年   214篇
  2001年   142篇
  2000年   150篇
  1999年   75篇
  1998年   100篇
  1997年   92篇
  1996年   88篇
  1995年   85篇
  1994年   90篇
  1993年   85篇
  1992年   86篇
  1991年   69篇
  1990年   85篇
  1989年   66篇
  1988年   58篇
  1987年   55篇
  1986年   50篇
  1985年   62篇
  1984年   85篇
  1983年   68篇
  1982年   61篇
  1981年   58篇
  1980年   48篇
  1979年   48篇
  1978年   34篇
  1977年   20篇
  1976年   21篇
  1974年   16篇
  1973年   13篇
排序方式: 共有8103条查询结果,搜索用时 250 毫秒
61.
Adult human bone marrow stromal cells (BMSCs) containing or consisting of mesenchymal stem cells (MSCs) are an important source in tissue homeostasis and repair. Although many processes involved in their differentiation into diverse lineages have been deciphered, substantial inroads remain to be gained to synthesize a complete regulatory picture. The present study suggests that structural conformation of extracellular collagen I, the major organic matrix component in musculoskeletal tissues, plays, along with differentiation stimuli, a decisive role in the selection of differentiation lineage. It introduces a novel concept which proposes that structural transition of collagen I matrix regulates cell differentiation through distinct signaling pathways specific for the structural state of the matrix. Thus, on native collagen I matrix inefficient adipogenesis is p38-independent, whereas on its denatured counterpart, an efficient adipogenesis is primarily regulated by p38 kinase. Inversely, osteogenic differentiation occurs efficiently on native, but not on denatured collagen I matrix, with a low commencement threshold on the former and a substantially higher one on the latter. Osteogenesis on collagen I matrices in both structural conformations is fully dependent on ERK. However, whereas on native collagen I matrix osteogenic differentiation is Hsp90-dependent, on denatured collagen I matrix it is Hsp90-independent. The matrix conformation-mediated regulation appears to be one of the mechanisms determining differentiation lineage of BMSCs. It allows a novel interpretation of the bone remodeling cycle, explains the marked physiological aging-related adipogenic shift in musculoskeletal tissues, and can be a principal contributor to adipogenic shift seen in a number of clinical disorders.  相似文献   
62.
63.
Abstract

Adhesion G-protein-coupled receptors (GPCRs) are the most recently identified and least understood subfamily of GPCRs. Adhesion GPCRs are characterized by unusually long ectodomains with adhesion-related repeats that facilitate cell– cell and cell–cell matrix contact, as well as a proteolytic cleavage site-containing domain that is a structural hallmark of the family. Their unusual chimeric structure of adhesion-related ectodomain with a seven-pass transmembrane domain and cytoplasmic signaling makes these proteins highly versatile in mediating cellular signaling in response to extracellular adhesion or cell motility events. The ligand binding and cytoplasmic signaling modes for members of this family are beginning to be elucidated, and recent studies have demonstrated critical roles for Adhesion GPCRs in planar polarity and other important cell–cell and cell–matrix interactions during development and morphogenesis, as well as heritable diseases and cancer.  相似文献   
64.
《Epigenetics》2013,8(4):579-586
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   
65.
Titov  I. I.  Schroeder  H.-K. 《Molecular Biology》2001,35(6):950-954
One of the main problems of metabolic engineering is to determine the genetically controlled limiting links of a metabolic network. We have built a model of the primary transport of inorganic phosphates (P i ), analyzed the P i metabolic network in Gram-negative bacteria, and determined the factors controlling the phosphate exchange. The model explains why the P i primary transport is not observed at the release stage. The nonlinearity of primary transport and the differences in its parameters in the membrane and within the cell give rise to transport asymmetry, i.e., the P i release rate is low as compared with the uptake rate, and is small at the background of secondary transport. Discussed is a general scheme of coordination between primary and secondary transport, which are interconnected through the substrate–product relation.  相似文献   
66.
《Molecular cell》2021,81(23):4799-4809.e5
  1. Download : Download high-res image (282KB)
  2. Download : Download full-size image
  相似文献   
67.
Several apoplastic enzymes have been implicated in the control of elongation growth of plant cells. Among them, peroxidases contribute to both loosening and stiffening of the cell wall. They appear to be regulated by various mechanisms, including the action of extracellular inhibitors. To obtain evidence of the role of the enzyme–inhibitor interaction during leaf development, the intercellular washing fluids from Helianthus annuus leaves of different ages were isolated using standard methods of vacuum infiltration and centrifugation. Peroxidase activities, assessed using tetramethylbenzidine as substrate, increased during leaf development, reaching a maximum value after the leaves were fully expanded. An inhibitor, chemically characterised as ascorbate, co‐localised with the enzyme in the apoplast. Moreover, there was a strong negative correlation between the action of peroxidase and the micromolar concentration of ascorbate in the apoplastic fluid. The results show that in growing leaves, the in planta ascorbate concentration is able to restrain peroxidase enzyme activity. Then, at the time of growth cessation, the loss of extracellular ascorbate relieves the inhibition on this enzyme that contributes to wall fixation.  相似文献   
68.
Summary

Extracellular currents near the surface of the electrically excitable egg of Locusta migratoria have been studied through the combined use of the 2-dimensional vibrating probe and an intracellular microelectrode. Intracellular current injection increased extracellular current densities to levels readily detectable by the vibrating probe, and it has been possible to show that injected current traverses the egg in the posterior end containing the micropylar zone. Extracellular currents could not be detected during the rising, plateau or falling phases of the long duration (>100s) action potential in the egg. Increases in current density during the hyperpolarizing after potential which lasts for 6–10 min after termination of the action potential were also restricted to the posterior end of the egg. The results suggest that the primary region at which current traverses the chorionated egg is near or at the micropylar zone.  相似文献   
69.
Extracellular adenosine, a key regulator of physiology and immune cell function that is found at elevated levels in neonatal blood, is generated by phosphohydrolysis of adenine nucleotides released from cells and catabolized by deamination to inosine. Generation of adenosine monophosphate (AMP) in blood is driven by cell-associated enzymes, whereas conversion of AMP to adenosine is largely mediated by soluble enzymes. The identities of the enzymes responsible for these activities in whole blood of neonates have been defined in this study and contrasted to adult blood. We demonstrate that soluble 5′-nucleotidase (5′-NT) and alkaline phosphatase (AP) mediate conversion of AMP to adenosine, whereas soluble adenosine deaminase (ADA) catabolizes adenosine to inosine. Newborn blood plasma demonstrates substantially higher adenosine-generating 5′-NT and AP activity and lower adenosine-metabolizing ADA activity than adult plasma. In addition to a role in soluble purine metabolism, abundant AP expressed on the surface of circulating neonatal neutrophils is the dominant AMPase on these cells. Plasma samples from infant observational cohorts reveal a relative plasma ADA deficiency at birth, followed by a gradual maturation of plasma ADA through infancy. The robust adenosine-generating capacity of neonates appears functionally relevant because supplementation with AMP inhibited whereas selective pharmacologic inhibition of 5′-NT enhanced Toll-like receptor-mediated TNF-α production in neonatal whole blood. Overall, we have characterized previously unrecognized age-dependent expression patterns of plasma purine-metabolizing enzymes that result in elevated plasma concentrations of anti-inflammatory adenosine in newborns. Targeted manipulation of purine-metabolizing enzymes may benefit this vulnerable population.  相似文献   
70.
Adenosine triphosphate production in mitochondria of bean hypocotyls and maize coleoptiles is inhibited by sulphite. Oxidized glutathione decreases the inhibition, probably by reducing the sulphite concentration in the reaction mixture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号